论文

Embedding semantic hierarchy in discrete optimal transport for risk minimization

作者
Yubin Ge, Xuyang Li, Fangfang Fan, Wanqing Xie, Jane You, Xiaofeng Liu
发表日期
2021/6/6
研讨会论文
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
页码范围
2835-2839
出版商
IEEE
简介
The widely-used cross-entropy (CE) loss-based deep networks achieved significant progress w.r.t. the classification accuracy. However, the CE loss can essentially ignore the risk of misclassification which is usually measured by the distance between the prediction and label in a semantic hierarchical tree. In this paper, we propose to incorporate the risk-aware inter-class correlation in a discrete optimal transport (DOT) training framework by configuring its ground distance matrix. The ground distance matrix can be pre-defined following a priori of hierarchical semantic risk. Specifically, we define the tree induced error (TIE) on a hierarchical semantic tree and extend it to its increasing function from the optimization perspective. The semantic similarity in each level of a tree is integrated with the information gain. We achieve promising results on several large scale image classification tasks with a semantic tree structure …